
Quantifying Uncertainty in Ice Particle Velocity–Dimension Relationships Using

MC3E Observations

ANDREW M. DZAMBO,a GREG MCFARQUHAR,a,b AND JOSEPH A. FINLONc

a Cooperative Institute for Severe and High Impact Weather and Research Operations, University of Oklahoma, Norman, Oklahoma
b School of Meteorology, University of Oklahoma, Norman, Oklahoma

c Department of Atmospheric Sciences, University of Washington, Seattle, Washington

(Manuscript received 10 December 2021, in final form 4 August 2022)

ABSTRACT: Ice particle terminal fall velocity (Vt) is fundamental for determining microphysical processes, yet remains
extremely challenging to measure. Current theoretical best estimates of Vt are functions of Reynolds number. The Reynolds
number is related to the Best number, which is a function of ice particle mass, area ratio (Ar), and maximum dimension
(Dmax). These estimates are not conducive for use in most models since model parameterizations often take the form
Vt 5 aDb

max, where (a, b) depend on habit and Dmax. A previously developed framework is used to determine surfaces of
equally plausible (a, b) coefficients whereby ice particle size/shape distributions are combined with Vt best estimates to de-
termine mass- (VM) or reflectivity-weighted (VZ) velocities that closely match parameterized VM,SD or VZ,SD calculated us-
ing the (a, b) coefficients using two approaches. The first uses surfaces of equally plausible (a, b) coefficients describing mass
(M)–dimension relationships (i.e., M5 aDb

max) to calculate mass- or reflectivity-weighted velocity from size/shape distribu-
tions that are then used to determine (a, b) coefficients. The second investigates how uncertainties inAr,Dmax, and size distri-
bution N(D) affect VM or VZ. For seven of nine flight legs flown on 20 and 23 May 2011 during the Mesoscale Continental
Convective Clouds Experiment (MC3E), uncertainty from natural parameter variability}namely, the variability in ice parti-
cle parameters in similar meteorological conditions}exceeds uncertainties arising from differentAr assumptions orDmax esti-
mates. The combined uncertainty between Ar, Dmax, and N(D) produced smaller variability in (a, b) compared to varying
M(D), demonstrating M(D) must be accurately quantified for model fall velocities. Primary sources of uncertainty vary con-
siderably depending on environmental conditions.

SIGNIFICANCE STATEMENT: Ice particle fall velocity is fundamental for numerous processes within clouds, and
hence is a critical property that must be accurately represented in weather and climate models. Using aircraft observa-
tions of ice particle shapes and sizes obtained in clouds behind midlatitude thunderstorms, this work develops a new
framework for estimating ice particle fall velocities and their uncertainty, including quantifying the importance of dif-
ferent uncertainty sources from cloud microphysics measurements. Natural parameter variability contributes the most
uncertainty in ice particle fall velocity estimates, although other sources can also be important contributors to uncer-
tainty in certain conditions. Additional work examining ice particle data is needed to further understand how depen-
dent uncertainty in certain ice particle properties are to local environmental conditions.
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1. Introduction

One of the most fundamental properties of ice crystals
relevant for understanding cloud microphysical processes is
terminal fall velocity (referred to as fall velocity hereafter;
see AMS Glossary of Meteorology). An ice crystal’s shape,
maximum dimension perpendicular to the direction of its
fall, and density are most important in determining its fall
velocity (e.g., Locatelli and Hobbs 1974; Mitchell et al. 1990).
Ice particle fall velocity represents a key facet for numerous
important processes in the atmosphere such as water vapor re-
distribution (Bony et al. 2008; D’Alessandro et al. 2019),
changes to vertical latent and radiative heating profiles (Nelson
and L’Ecuyer 2018), microphysical evolution of precipitation
including hail formation, aggregation, riming, and sublimation
(Heymsfield et al. 1980; McFarquhar et al. 2006; A. J. Jensen

et al. 2017; Stanford et al. 2017; Chase et al. 2018; Bühl et al.
2019; Finlon et al. 2020; Morrison et al. 2020; Huang et al.
2021; Tobin and Kumjian 2021; Shates et al. 2021), surface en-
ergy and hydrologic balance (Daloz et al. 2018), and feedbacks
within weather and climate models (Bony et al. 2015; Hofer
et al. 2019; Wang et al. 2020; Sledd and L’Ecuyer 2021). Quan-
tifying fall velocities and their uncertainties is also critical for
accurate cloud and precipitation remote sensing retrievals (e.g.,
Matrosov and Heymsfield 2000; Barrett et al. 2019; Chase et al.
2021). Finally, ice crystal fall velocity is one of the most impor-
tant parameters determining climate sensitivity (Sanderson
et al. 2008) through its impact on ice cloud coverage (Klein
and Jakob 1999; Mitchell et al. 2008).

Dating back to the earliest known studies on ice crystal fall
velocities (Nakaya and Terada 1935; Heymsfield 1972, and
references therein), ice particle fall velocities and their uncer-
tainties have been notoriously difficult to quantify for many rea-
sons. An ice particle’s fall velocity depends on its mass, density,
shape (or habit), and dimension (Locatelli and Hobbs 1974;Corresponding author: AndrewDzambo, dzamboam@ou.edu
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Heymsfield et al. 2002, 2004; Schmitt and Heymsfield 2010;
Mascio et al. 2017; Magee et al. 2021; Bailey and Hallett 2009),
all of which are very difficult to directly measure in real time.
Varying environmental conditions (temperature, pressure,
humidity), convective properties and large-scale synoptic con-
ditions largely dictate ice particle properties (Dzambo and
Turner 2016; Hu et al. 2021). In addition to environmental vari-
ability, ice crystals are typically not observed in the conditions
where they grew and instrument limitations add uncertainty to
fall velocity estimates (Brandes et al. 2008; Finlon et al. 2019).
Regardless of environmental conditions, ice particle fall veloci-
ties fluctuate during descent (Nettesheim and Wang 2018),
adding a small but potentially important source of uncertainty.

Following earlier studies by List and Schemenauer (1971),
Locatelli and Hobbs (1974), Böhm (1989), and others, Mitchell
(1996, denoted MI96 hereafter) developed a method for com-
puting ice particle fall velocity from particle mass and projected
area. This method predicted ice crystal fall velocity to within
20% of reference laboratory measurements. Several other stud-
ies that developed fall velocity relationships based upon ice par-
ticle maximum dimension, mass, or projected area (e.g., Erfani
and Mitchell 2017; Vázquez-Mart́ın et al. 2021a,b) noted a vari-
ety of uncertainties and error estimates associated with fall ve-
locity computations. For example, Heymsfield and Westbrook
(2010, denoted HW10 hereafter) addressed an issue where ice
particles with low area ratios (i.e., the ratio of the projected
area of the ice crystal to the smallest possible circle that would
enclose the ice crystal; see McFarquhar and Heymsfield 1996)
contributed large uncertainties to computed fall velocities.
Schmitt et al. (2019) computed statistical probabilities of termi-
nal velocity for ice particles of the same size and found that var-
iability increases by at least 20% with increasing temperature
and particle size.

Ice particle fall velocities have been overly simplified in
weather and climate models (Baumgardner et al. 2012), with
many studies referenced hereafter citing ice particle fall veloc-
ities as a key source of uncertainty in their results and/or a
critical area of investigation for future modeling- or observa-
tion-based studies. Recent improvements to the representa-
tion of ice particles in the Predicted Particle Properties (P3)
scheme (Morrison and Milbrandt 2015) have balanced in-
creased complexity without sacrificing computational effi-
ciency (e.g., Milbrandt et al. 2021). In the P3 scheme and all
other bulk microphysics schemes, ice sedimentation fluxes are
computed via moment-weighted (e.g., mass or reflectivity) fall
speeds. These moment-weighted fall speeds directly impact
microphysical process rates (e.g., McFarquhar and Black
2004) and all prognostic ice variables including total ice mass,
rime ice mass, total ice number, and rime ice volume in the P3
scheme (Milbrandt et al. 2021). Milbrandt et al. (2021)
showed that such treatments in a triple-moment version of P3
improved the representation of hail. Xue et al. (2017), moti-
vated by the idea that bin microphysics schemes should be
more accurate and realistic compared to bulk microphysics
schemes, found that both microphysics schemes produce qual-
itatively similar results when creating idealized simulations of
a squall line and concluded that improved representation
of ice particle velocities (among other properties) and their

uncertainty is necessary to isolate the impact of physics on
weather system evolution. Stanford et al. (2019) showed
how variations in velocity–dimension relationships resulted
in varying rainfall rates and total accumulated rainfall for se-
lected Mesoscale Continental Convective Clouds Experiment
(MC3E; Jensen et al. 2015, 2016) case studies. These recent
studies demonstrate a need to understand variations in ice par-
ticle fall velocities and to reduce uncertainty in ice particle fall
velocity representations.

While direct airborne measurements of ice particle fall ve-
locities are not currently made, numerous prior studies have
advanced the ability to estimate fall velocities from airborne
measurements. Over the past three decades, ice particle data-
sets have been cataloged from numerous airborne field cam-
paigns representing a variety of environmental conditions
(e.g., McFarquhar and Heymsfield 1996; McFarquhar et al.
2007; Jensen et al. 2013; Spichtinger and Krämer 2013; Jensen
et al. 2016; Krämer et al. 2016; E. J. Jensen et al. 2017). In addi-
tion to the wide variety of environmental conditions sampled
through such campaigns, advances in the interpretation of air-
borne ice particle measurements such as accounting for ice par-
ticle shattering (Korolev et al. 2011; Jackson et al. 2014) and
instrument mounting location (Afchine et al. 2018) have im-
proved confidence in analyses resulting from these datasets.

Given that multiple sources of uncertainty contribute to
variations in derived ice particle parameters, McFarquhar
et al. (2015) developed a framework to represent parameters
(i.e., gamma fit parameters) describing ice particle size distri-
butions (PSDs hereafter) as volumes of equally plausible solu-
tions in the phase space of the parameters rather than as fixed
values. They also showed that the parameters used to quantify
particle size distributions are codependent to a high degree.
McFarquhar et al. (2015) also showed that, for a fixed mass–
dimensional relationship, terminal velocity varied by 0.15 m s21

for equally plausible parameters describing a number distribu-
tion function N(D). Using airborne data from MC3E, Finlon
et al. (2019) expanded this framework to compute equally
plausible mass–dimension relationship parameters for vary-
ing environmental conditions and elucidated the relative
roles of size distribution uncertainties relative to measure-
ment uncertainty and the natural variability of the parame-
ters. Natural variability in this context implies that (a, b)
have varying values due to differences in N(D), Ar, and other
parameters even in the same environmental conditions. Ding
et al. (2020) similarly expanded this framework to quantify the
role of ice particle maximum dimension uncertainty on result-
ing mass–dimension relationship parameters.

This present study builds upon these frameworks by con-
textualizing how equally plausible mass–dimension relation-
ships affect resulting mean fall velocity estimates, while also
evaluating how measurement uncertainties in size distribu-
tions, area ratios and maximum dimension as well as the natu-
ral variability of parameters contribute to the spread in fall
velocity estimates. Although this study does not involve any
direct modeling work demonstrating how uncertainty in ice
particle fall velocity affects model simulations, it does provide
a foundation whereby uncertainties in ice particle fall veloci-
ties can be tested in the P3 and related microphysics schemes.
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The remainder of the paper is organized as follows. Section 2
describes the MC3E campaign and those measurements from
the MC3E campaign used in this study. Section 3 describes the
quantification of fall velocity and fall velocity uncertainties, and
the development of a framework for determining surfaces of
equally plausible fall velocities applicable to modeling studies.
Sections 4 and 5 discuss results from two methods testing the
aforementioned framework, and conclusions are presented in
section 6. The two methods described in this work aim to ad-
dress the following science questions:

1) If a number of equally plausible mass–dimension (M–D
hereafter) relationships can describe a population of ice
particles, how much variability arises among velocity–
dimension (V–D hereafter) parameters when account-
ing for all plausible M–D relationships?

2) What are the key sources of uncertainty determining the
variability of the equally plausible V–D relationships, and
how do these compare to those for the uncertainty arising
from varying but equally plausible M–D relationships?

2. Datasets

A brief overview of the MC3E campaign is presented here,
as well as the data and procedures used to compute ice parti-
cle fall velocities and their uncertainties. The list of abbrevia-
tions used throughout this study are given in the appendix.

a. MC3E campaign

The MC3E field campaign, led jointly by the U.S. National
Aeronautics and Space Administration (NASA) Global
Precipitation Measurement (GPM) andDepartment of Energy’s
(DOE) Atmospheric Radiation Measurement (ARM) pro-
grams, took place from 22 April 2011 through 6 June 2011
over the Southern Great Plains (SGP) centered on south-
central Oklahoma (Jensen et al. 2016). Instruments aboard
the University of North Dakota’s Citation aircraft and syner-
gistic suite of ground-based radars, radiosondes, and disdrome-
ters were used to generate a comprehensive dataset aimed at
improving the understanding of processes leading to convec-
tion initiation, the dynamical evolution of deep convection,
and the microphysical evolution of rainfall, hail, and ice within
observed mesoscale convection. Two flights highlighted in this
study from 20 and 23 May 2011 sampled a mesoscale convec-
tive system (MCS) and a supercell thunderstorm, respectively.
The analysis presented here focuses on observations collected
during constant altitude (at near-constant temperature) flight
legs where only ice phase hydrometeors were observed and
where coincident radar reflectivity measurements exist. Choos-
ing near-constant temperature flight legs also allows for the as-
sumption that all measured ice particles along a given flight leg
are representative of the same particle growth environment.
Coincident radar reflectivity data from the Vance Air Force
Base (location: 36.33938N, 97.91318W) WSR-88D (S band)
are collocated to coincident aircraft measurements using the
Python ARM Radar Toolkit (PyART; Helmus and Collis
2016) and the Airborne Weather Observation Toolkit radar
matching algorithm (Nesbitt et al. 2019). Finally, for consistency,

radar reflectivity measurements are quality controlled following
section 5.1 in Finlon et al. (2019).

b. OAP datasets

Data from two Optical Array Probes (OAPs), namely, a
Two-Dimensional Cloud Probe (2D-C) and the High Volume
Precipitation Spectrometer (HVPS), were used. Data from
both probes were processed using the University of Illinois/
Oklahoma OAP Processing Software (UIOOPS; McFarquhar
et al. 2018). The 2D-C and HVPS each record two-dimensional
images of ice particles with size resolutions of 30- and 150-mm
resolution, respectively. Composite particle size distributions
(PSDs) were generated using 1-s averaged 2D-C and HVPS
PSDs as a function of particle maximum dimension D defined
following Wu and McFarquhar (2016), using a 1 mm cutoff be-
tween the probes following Finlon et al. (2019). Particles with
D , 150 mm were excluded due to large uncertainties in the
derived number distribution function N(D) because of a small
and poorly defined sample volume, the small numbers of pho-
todiodes shadowed, and potential impact of shattered particles
(Baumgardner and Korolev 1997; McFarquhar et al. 2017, and
references therein). Within UIOOPS, best estimates of ice par-
ticle mass were computed using a number of different techni-
ques. Ice particle habits are first identified using modifications
to the Holroyd (1987) methodology (Jackson et al. 2014).
Appropriate coefficients for mass M(D) and area A(D) rela-
tionships for each habit class are then determined, where
m(D) 5 aDb and A(D) 5 nDs. Of importance for this work
is the ice particle area ratio (Ar), which is determined using
this best-estimate A(D) for the identified habit and then
computed as Ar 5A(D)/[(p/4)D2] for use in the fall velocity
calculations (see section 3). Table 1 lists the M(D) and A(D)
relationships corresponding to the habit classification used
in this study. Though not considered in this study, a second
option for computing mass follows the Baker and Lawson
(2006) approach using direct measurements of projected
area derived from the crystal images and Dmax to estimate
mass. For ice particles with a best estimate mass and known
area ratio, a terminal velocity can be computed following the
method outlined in section 3.

3. Fall velocity computations and uncertainty estimates

Many field and laboratory experiments measuring ice parti-
cle fall velocities have been used as a basis for finding the best
power-law representation for fall speed (V) as a function of D
(e.g., Kajikawa 1973; Locatelli and Hobbs 1974; Khvorostyanov
and Curry 2002, 2005) for use in weather and climate models
following

V(D) 5 aDb, (1)

where a is a prefactor (often in units of m12b s21) and b is an
exponent. The a and b are typically derived by determining the
values that provide the best characterization of V as a function
ofD. Both a and b are also adjusted to sea level pressure (SLP;
taken to be 1000 mb in this study) and any reference of V(D)
hereafter implies a and b are representative of SLP conditions.
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A well-known caveat to using V–D relationships is the fact that
area ratio, particle dimension, and size distribution measure-
ments introduce uncertainty because each of these properties
has their own individual measurement uncertainty. Further-
more, equally plausible M–D relationships accounting for mea-
surement uncertainties and natural variability also lead to
uncertainty in V–D relationships. However, the relative magni-
tude of their uncertainty relative to the aforementioned uncer-
tainties in area ratio, maximum dimension, and size distribution
is unknown. The following subsections highlight the procedures
used to compute ice particle fall velocity and its uncertainty.

a. Fall velocity computation

Direct measurements of ice particle terminal velocities
have not been previously obtained with airborne instrumenta-
tion. The most reliable measurements of ice crystal terminal
velocities have been obtained in laboratory experiments and
ground-based studies or field campaigns (e.g., Kajikawa 1973;
Locatelli and Hobbs 1974; MI96; HW10). The terminal veloc-
ity of an ice crystal is computed as

VT(D) 5 hRe

raD
, (2)

where Re is the Reynolds number, h the dynamic viscosity of air
(kg m21 s21), ra the density of air, and D is determined from
2D-C and HVPS data. The air density ra is pressure depen-
dent, implying VT is also a function of air pressure. Following
Heymsfield (1972), VT is adjusted to SLP following

VT,1000 5 VT 3
P

P1000

( )0:5
, (3)

where P is the air pressure of the aircraft and P1000 is the sea
level pressure. The Reynolds number (e.g., Beard 1980;
Böhm 1989) can be expressed as

Re 5
d20
4

1 1
4X[m(D)]
d20

����
C0

√{ }1/2

2 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠2, (4)

where the Best or Davies number X (Davies 1945; Best 1950)
is a dimensionless quantity that represents the drag of a falling

sphere into a fluid. The Best number can be formulated as
(e.g., Beard 1980; Khvorostyanov and Curry 2005)

X[m(D)] 5 8rag
ph2Ar

m(D) (5)

or, using the HW10 approach for a “modified” Best number
X*, as

X*[m(D)] 5 8rag
ph2Ak

r
m(D), (6)

where Ar represents the ice crystal area ratio. The exponential
k in Eq. (6) represents a correction factor to the area ratio
and is set to 0.5 following HW10. Finally, g is gravity, C0 is a
drag coefficient approximated as 0.6, and d0 is a dimensionless
coefficient set to 5.83 when using Eq. (5) (Böhm 1989), or C0

is set to 0.35 and d0 is set to 8 when using Eq. (6) (HW10).
The value of VT is computed using Eqs. (2)–(6) for every ice
particle observed by the OAPs described in section 2.

Computations of VT for individual ice particles are not di-
rectly applied in modeling applications that use bulk parame-
terization schemes. For such schemes, the mass-weighted
mean fall velocity (VM) of a population of ice crystals is used
to characterize their motion and is written as

VM 5

�‘

0
VT(D)m(D)N(D)dD�‘

0
m(D)N(D)dD

, (7a)

or for a number of discrete size bins as

VM 5

∑
K

i51
VT(Di)(m(Di))N(Di)DDi

∑
K

i51
[m(Di)]N(Di)DDi

, (7b)

where N(D) [N(Di)] is the number distribution function of
particles with dimension D(Di). Equation (7a) represents the
general form for computing a mass-weighted fall velocity
based on a continuous distribution, as generally assumed in
bulk schemes. However, since measured ice crystals are sorted

TABLE 1. A summary of mass–dimension M(D) and area–dimension A(D) habit-dependent parameters used to generate the best-
estimate VT dataset. Note that a “tiny” particle is defined as a 2D-C or an HVPS particle image containing 25 or fewer pixels. Each
M(D) and A(D) relationship is listed in Table 1 of MI96 except for those under the “spherical” or “tiny” classification, which are
defined based on Brown and Francis (1995).

Habit
classification M(D) 5 aDb (g) A(D) 5 aDb (mm2)

Spherical a 5 0.002 940, b 5 1.90 a 5 0.2285, b 5 1.88
Linear a 5 0.000 907, b 5 1.74 a 5 0.0696, b 5 1.50
Oriented a 5 0.000 907, b 5 1.74 a 5 0.0696, b 5 1.50
Tiny a 5 0.002 940, b 5 1.90 a 5 0.2285, b 5 1.88
Hexagonal a 5 0.007 390, b 5 2.45 a 5 0.6500, b 5 2.00
Irregular a 5 0.002 940, b 5 1.90 a 5 0.2285, b 5 1.88
Graupel a 5 0.049 000, b 5 2.80 a 5 0.5000, b 5 2.00
Dendrite a 5 0.000 516, b 5 1.80 a 5 0.2100, b 5 1.76
Aggregate a 5 0.002 940, b 5 1.90 a 5 0.2285, b 5 1.88
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into size bins of width DDi with midpoint Di, it is more conve-
nient to use the discrete form of Eq. (7b) for computing VM.
To compare model fields against radar reflectivity observa-
tions, a reflectivity-weighted fall velocity (VZ) is frequently
used (e.g., Hogan et al. 2006) and can be expressed as, assum-
ing Rayleigh scattering,

VZ 5

�‘

0
VT(D)[m(D)]2N(D)dD
[m(D)]2N(D)dD , (8a)

or expressed in discrete form as

VZ 5

∑
K

i51
VT(Di)[m(Di)]2N(Di)dD

∑
K

i51
[m(Di)]2N(Di)dD

· (8b)

Hereafter, VM,Z represents either VM or VZ.
Although direct measurements of Ar are obtained from the

2D-C and HVPS two-dimensional images, there are uncer-
tainties induced by the orientation of the crystals relative to
the imaging lasers. Further, direct estimates of Ar are only
possible for crystals entirely within the photodiode array. This
will be addressed in future work. Even though crystals typi-
cally fall with their maximum dimension oriented perpendicu-
lar to the fall direction, both McFarquhar et al. (1999) and
Um and McFarquhar (2011) showed substantial variability in
both D and Ar for the imaging of ice crystal habits and that D
derived from UIOOPS is not the true maximum dimension of
a three-dimensional ice crystal. This is particularly problem-
atic for ice crystals with low Ar such as dendrites or stellar
crystals (HW10). Hence, HW10 improved VT estimates for

low Ar ice crystals through a k-factor correction [i.e., Ak
r in

Eq. (6)].
The mean mass- and reflectivity-weighted fall velocities in-

clude several sources of uncertainty, which must be accounted
for, in order to develop equally realizable solutions of VM,Z as
needed in bulk microphysics schemes. The best estimates of
M(Di) are used to compute VM and VZ following Eqs. (7b)
and (8b). The next two subsections outline the process for
computing the effect of varying equally realizable M(D) on
VM and VZ, as well as uncertainties in VM and VZ associated
with the ice particle area ratio, maximum dimension, size dis-
tribution, and natural variability of microphysical parameters
within similar environmental conditions.

Figures 1 and 2 show the 10-s averaged VM for the 20 and
23 May 2011 flights (respectively) computed using the HW10
and MI96 methods. The difference in terminal velocity be-
tween the two methods is at least 0.03 m s21 (0.06 m s21) for
terminal velocities exceeding 0.3 m s21 for the 20 May 2011
(23 May 2011) flight. For all 23 May 2011 flight legs, the per-
cent difference between the Vt estimates is over 20%, which is
larger than the 10%–15% difference noted for the 20 May
2011 flight legs. Tiny ice particles (i.e., less than 25 pixels or
within the 150–200 mm range if measured by the 2D-C; less
than 25 pixels or within the 1–2 mm range if measured by the
HVPS) contribute over half of the total sampled mass for the
23 May 2011 flight (see Table 2). Noting that approximately
95% of the total mass for all flight legs was observed by the
2D-C, the higher percent increase in Vt between the HW10
and MI96 computations is consistent with the finding from
HW10 that fall velocities were overestimated by the MI96
methods for smaller ice particles. In fact, concentrations of
tiny particles between 150 and 200 mm were nearly an order
of magnitude higher for all 23 May 2011 flight segments com-
pared to the 20 May 2011 flight segments (Figs. 3 and 4).

b. Effect of equally plausible M(D) relations on V(D)

This section describes how the use of equally plausible
surfaces of (a, b) coefficients in M(D) relationships affects
the spread of (a, b) coefficients in V(D) relationships. To

FIG. 1. (top) The 10-s, mass-weighted, mean flight-level fall ve-
locity for the 20 May 2011 research flight using HW10 (blue) and
MI96 (red) methods applied to composite 2D-C/HVPS PSD and
(middle) the difference in VM estimates and (bottom) percent
difference in VM estimates. Also shown are the flight segments ana-
lyzed in this paper (highlighted in gray) and follow the flight
segments analyzed in Finlon et al. (2019) for consistency.

FIG. 2. As in Fig. 1, but for the 23 May 2011 flight.

D ZAMBO E T AL . 193JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/11/23 03:58 PM UTC



compute the spread of (a, b) coefficients, this study adapts re-
cently developed methodologies by McFarquhar et al. (2015),
Finlon et al. (2019), and Ding et al. (2020) using a x2 minimiza-
tion procedure. A x2minimization procedure is ideal for inves-
tigating uncertainty in ice particle fall velocity uncertainty
because it allows for multiple sources of uncertainty to be
included and allows for each source to be computed and com-
pared independently of one another. To outline the x2 minimi-
zation procedure, the Finlon et al. (2019) study that determined
equally plausible (a, b) parameters in M(D) relationships is
briefly described here. Finlon et al. (2019) minimized the x2 dif-
ference between the total ice water content and radar reflectivity
estimated from the size distributions with those measured di-
rectly by the Nevzorov probe (Korolev et al. 1998) and by the
radar at Vance Air Force Base, using a quantity x2T defined for
a given set of (a, b) coefficients as

x2
T(a, b) 5

1
N
∑
N

i51
[TWCdiff(i) 1 Zdiff(i)], (9a)

where x2T minimizes the summation of TWCdiff and Zdiff over N
10-s data points for a given flight leg, where TWCdiff and Zdiff

represent metrics describing a weighted difference between the
measured TWC and Z and those computed from the observed
size distributions (denoted by the subscript SD) such that

TWCdiff 5 {[TWC2 TWCSD(a,b)]/
�����������������������������
TWC 3 TWCSD(a,b)

√ }2

and Zdiff 5 {[ ���
Z

√
2

������������
ZSD(a,b)

√ ]/
��������������������������
Z

√
3

������������
ZSD(a,b)

√√
}
2

, whereby

the (a, b) that minimize x2T is determined, eliminating the need to
assume any M(D) for a given sample volume. The underestimate
of TWC measured by the Nevzorov probe in the presence of
larger ice crystals has been documented in previous studies (e.g.,
Faber et al. 2018), and motivates the additional use of reflectivity
to create the equally realizable surfaces shown in section 4. For
field campaigns where airborne TWC data may not be available or
are deemed problematic, or otherwise for applications where only
radar reflectivity data are available, x2Z can be used instead where

x2
Z(a,b) 5

1
N
∑
N

i51
[Zdiff(i)] · (9b)

For this study, both the x2
T cost function for M(D) from Eq. (6)

in Finlon et al. [2019; adapted as Eq. (9a) for this work] and the
x2Z cost function using only radar reflectivity [Eq. (9b)] following
Ding et al. (2020) are used. A key result from Finlon et al. (2019)
is that the range of plausible b computed was significantly larger
for flight legs on 20 May 2011 compared to the range for
23 May 2011, likely because of the fact that b increases with in-
creasing temperature and IWC, both of which increased during
the 20 May 2011 case. The prefactor a also had much less

TABLE 2. Summary of mean flight temperature, altitude, duration, and percent mass of each ice particle habit for flight legs used in
this analysis. The mean temperature and altitude data contained in this table were adapted from Table 1 in Finlon et al. (2019).

Flight
segment

Mean
temp
(8C)

Mean
altitude
(km)

Spherical
(%)

Linear
(%)

Oriented
(%)

Tiny
(%)

Hexagonal
(%)

Irregular
(%)

Graupel
(%)

Dendrite
(%)

Aggregate
(%)

1341:25–
1352:00 UTC
20 May 2011

25.6 5.0 24 4 2 8 56 5 0 1 0

1354:05–
1400:05 UTC
20 May 2011

210.4 5.9 25 4 2 8 55 5 0 1 0

1416:32–
1432:15 UTC
20 May 2011

222.7 7.9 26 3 2 9 54 5 0 1 0

1435:30–
1440:35 UTC
20 May 2011

216.4 6.9 25 3 3 10 53 5 0 1 0

2149:55–
2155:15 UTC
23 May 2011

225.0 7.9 10 3 3 55 27 2 0 0 0

2206:45–
2211:00 UTC
23 May 2011

225.3 7.9 10 3 3 55 27 2 0 0 0

2232:50–
2237:15 UTC
23 May 2011

234.7 9.1 10 3 3 54 28 2 0 0 0

2241:35–
2248:20 UTC
23 May 2011

234.2 9.1 10 3 3 53 29 2 0 0 0

2258:40–
2303:40 UTC
23 May 2011

234.4 9.1 9 3 3 54 29 2 0 0 0
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variability for the 20 May trailing stratiform case, likely owing to a
having less temperature dependence in the higher-altitude anvil
cirrus region (as in the 23 May case) compared to the lower-
altitude trailing stratiform region of an MCS (also see Heymsfield
et al. 2007). A similar methodology is developed here for charac-
terizing uncertainty inV(D) coefficients in the next section.

c. Uncertainty estimates

To compute uncertainties in VT and hence VM and VZ, a x2

technique similar to those outlined above is described here.
The x2 statistic, x2V hereafter, minimized to determine (a, b)
coefficients is represented as

x2
V 5

1
N
∑
N

i51
[Vdiff(i)], (10)

where Vdiff is a metric describing a weighted difference be-
tween the “best estimate” VM or VZ and that computed from

V(D) for a variety of (a, b), with the summation over N 10-s
averaged data points along a given flight path. Here

Vdiff 5
VM;Z 2 VM;Z,SD(a,b)����������������������������
VM;Z 3 VM;Z,SD(a,b)

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

, (11)

VM,SD 5

∑
K

i51
aDb

i [m(Di)]N(Di)dD

∑
K

i51
[m(Di)]N(Di)dD

, (12)

and

VZ,SD 5

∑
K

i51
aDb

i [m(Di)]2N(Di)dD

∑
K

i51
[m(Di)]2N(Di)dD

: (13)

FIG. 3. The mean number distribution functions for nine particle habit classifications following the Holroyd (1987) classification scheme
for each analyzed flight leg during the 20 May 2011 flight. The behavior of the number distribution functions between 1 and 2 mm is due
to the coarse pixel resolution of the HVPS (as noted in the text), but insignificant given that 95% of the total mass for each flight leg is con-
tained in the 2D-C measurements.
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Equation (11) represents a weighted difference between the
best estimate mass- or reflectivity-weighted mean fall velocity
and the mean fall velocity derived from N(D) and a given set
of (a, b) coefficients. Note that VM or VZ is used in Eq. (11)
depending upon whether mass- or reflectivity-weighted fall
speeds are computed (hereafter, VM;Z,SD refers to either VM,SD

or VZ,SD). The best estimates of both a and b are determined
by finding the smallest x2V . Given uncertainties, a range of a and
b are equally possible in addition to the smallest x2V . Thus, it is
necessary to define a “tolerance” for x2V such that any (a, b)
value fulfilling x2V , x2min 1Dx2V implies an “equally plausible”
solution where x2min is the minimum x2V determined from the
best estimate of (a, b). This x2min represents natural parameter
variability, which represents the expected variance in fall velocity
due to variance in ice microphysical properties in similar environ-
mental conditions (McFarquhar et al. 2015). The confidence re-
gion for x2V is adapted here following McFarquhar et al. (2015)
and Finlon et al. (2019), and defined as

Dx2V 5 max(x2min,Dx
2
1,V ,Dx

2
2,V ,Dx

2
3,V) (14)

where Dx21,V represents uncertainties due to area ratio (Ar)
measurements, Dx22 represents uncertainties in maximum di-
mension (Dmax) estimates, and Dx23 represents sampling un-
certainties in particle size distributions.

The Dx21,V accounting for the uncertainty in Ar is given by

Dx21,V 5
1
N
∑

VM,Z;VtArmax(i) 2 VM,Z(i)���������������������������������
VM,Z;VtArmax(i) 3 VM,Z(i)

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

, (15)

where VM,Z;VtArmax is the mean mass- or reflectivity-weighted
fall velocity using the Best number X as in Eq. (5). The
“max” annotation clarifies that Ar [i.e., Eq. (5) or the MI96
method] will almost always be larger than Ak

r [i.e., the cor-
rected Ar following Eq. (6)] though it is noted that values of
Ar can exceed 1 due to measurement error (especially for
smaller particles).

The Dx22,V term accounts for the uncertainty in (a, b) owing
to uncertainty inDmax. Khvorostyanov and Curry (2002) showed
using their ice particle fall velocity parameterization that (a, b)
varies with Dmax and particle habit, and Ding et al. (2020)

FIG. 4. As in Fig. 3, but for 23 May 2011 flight.
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recently demonstrated that the surface of equally plausible (a, b)
characterizing M(D) relationships depends on Dmax as well. It is
possible that a similar dependence betweenDmax and the surface
of equally plausible (a, b) in V(D) relationships also exists via
the uncertainty in Dmax. Thus, the Dx22,V term accounts for the
dependence of (a, b) onDmax and is expressed as

Dx22,V 5
1
N
∑ 1

2

VM,Z;VtDbin min(i) 2 VM,Z(i)
VM,Z;VtDbin min(i) 3 VM,Z(i)
[ ]2

1
1
2

VM,Z;VtDbin max(i) 2 VM,Z(i)
VM,Z;VtDbin max(i) 3 VM,Z(i)
[ ]2 , (16)

with VM,Z;VtDbin min and VM,Z;VtDbin_max representing the mean
mass- or reflectivity-weighted fall velocities recomputed using

the minimum/maximum endpoints of each bin [i.e., Di6DDi/2].
The bin widths are used to proxy an uncertainty for Dmax, and
therefore note that future studies should instead use Dmax un-
certainties once they become available for OAPs.

Finally, the uncertainty of N(D) must also be accounted
for when calculating Dx2V . Statistical sampling and measure-
ment uncertainty make up two sources of uncertainty in
N(D). To account for statistical sampling uncertainty, VM,Z

are recomputed by adding or subtracting the square root of
the number of counts in each bin from the best estimate of
N(D) for that bin, analogous to Hallett (2003), McFarquhar
et al. (2015), and Finlon et al. (2019), to give the uncertainty
in total particle counts for each size bin consistent with
Poisson statistics. The measurement uncertainty is assumed
to be 650% N(D), based on Heymsfield et al. (2013). Thus,
Dx23,V is written

Dx23,V 5
1
N
∑ 1

2

VM,Z;SDmin
(i) 2 VM,Z;SD(i)�����������������������������������

VM,Z;SDmin
(i) 3 VM,Z;SD(i)

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

1
VM,Z;SDmax

(i) 2 VM,Z;SD(i)����������������������������������
VM,Z;SDmax

(i) 3 VM,Z;SD(i)
√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

1
2

VM,Z;measmin
(i) 2 VM,Z(i)

VM,Z;measmin
(i) 3 VM,Z(i)

[ ]2
1

VM,Z;measmax
(i) 2 VM,Z(i)

VM,Z;measmax
(i) 3 VM,Z(i)

[ ]2⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠: (17)

In Eq. (17), VM,Z;SDmax
and VM,Z;SDmin

represent the mass- or
reflectivity-weighted fall velocity computed using 650% of
the N(D), respectively, following Heymsfield et al. (2013). For
the remainder of this analysis, it is assumed all uncertainties
are uncorrelated since each estimate is obtained from inde-
pendent measurements. Quantifying these sources of uncer-
tainty in the minimization of x2V enables a direct comparison
of the relative importance of Ar, Dmax, and N(D) uncertain-
ties on the computation of a and b. While Dx23,V was thought
to be important, it was found that Dx23,V was near zero and
hence not discussed further in this work. Understanding how
these uncertainties affect a and b is important for refining
fall velocity representation in models, for understanding fall
velocity variation with environmental conditions, and for
future improvements of cloud microphysics parameterization
schemes.

The design and application of this methodology considers
key sources of uncertainty and is flexible for future adaptation
when, for example, measurements of airborne ice particle ve-
locity may become available or a new source of uncertainty is
identified. Thus, application of this methodology here can be
regarded as a “proof of concept,” and in comparing x2T with
x2Z, the results of this study should be considered only in con-
text of the sources of uncertainty.

4. Variability arising from equally plausible M(D)

a. Method

To evaluate how equally plausible (a, b) parameters in mass–
dimension relations affect variability in V(D) relationships, it is

assumed that all equally plausible (a, b) can be used to represent
M(D) in Eqs. (12) and (13). All equally plausible M(D) are
used with all a between 0.05 and 25 m12b s21 (in increments of
0.025 m12b s21) and b between 0.05 and 0.85 (in increments of
0.0125) following Eqs. (12) and (13). For each (a, b) pair, the
resulting VM,Z;SD is compared against VM,Z using a two-sided
Student’s t test. It is assumed that VM,Z;SD and VM,Z are statisti-
cally different if p, 0.1. Using this approach offers insight into
how many and what fraction of equally plausible M(D) can re-
produce VM,Z;SD that are statistically similar to VM,Z. Finally,
the mean habit classification is also considered for this analysis.
The mean habit classification is defined as the percentage of
total mass for a given habit relative to the cumulative ice mass
estimated by the 2D-C and HVPS probes. It is again noted that
the 2D-C accounts for 95% of the total mass or more per flight
segment, since HVPS data are only included for D . 1 mm in
the composite PSD.

b. Results

Following the computations in section 3a and the method-
ology presented in section 4a, Fig. 5 reveals the percentage of
equally plausible M5 aDb

max relations that produce a statisti-
cally similar distribution of V 5 aDb

max to each respective best
estimate VM across all 20 May 2011 flight legs. Table 3 shows
the minimized M(D) relationship as well as the mean flight
leg velocity (VM) used to generate each respective subplot in
Fig. 5. The first flight leg for 20 May 2011 occurred in the
warmest conditions (25.98C) among the nine flight legs ex-
amined. Despite all four flight legs for 20 May 2011 having
habit frequencies to within 4% for a given habit (Table 2),
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Fig. 3 shows that flight leg 1 had the highest mean N(D) for
non-tiny and spherical habit particles with D . 1 mm. The
habit frequencies are quite similar among the flight legs even
though the HVPS habit distributions between flight legs 1
and 2 have lower mean Dmax compared to flight legs 3 and 4.
Flight legs 1 and 2 also took place at higher temperatures
compared to flight legs 3 and 4 (see Table 2). The observed

habit distributions likely result in flight leg 1 having the low-
est a coefficient and lowest variability in a among the four
flights leg on this day (Table 3), which is also consistent with
the lowest VM for all flight legs occurring during the first flight
(see Fig. 1). Flight legs 2, 3, and 4 have lower b relative to a

compared to flight leg 1 for all given a values, which is consis-
tent with the observed ice particles having a higher mean

FIG. 5. Percentage of equally plausible (a, b) coefficients generated using all equally plausible M(D) respective to
each individual flight leg that provides statistically similar fall velocity to the 10-s averaged flight leg, best-estimate
mass-weighted fall velocity VM. Each of the red two-letter symbols represent the (a, b) pairs for habit classifications
listed in Locatelli and Hobbs (1974) for reference (see Table 4 for more information).

TABLE 3. Mean and standard deviation of 1-s, mass-weighted terminal velocities (left), best estimate M(D) using Nevzorov probe
TWC and WSR-88D radar reflectivity measurements (middle), and best estimate M(D) using only radar reflectivity measurements
for all flight legs on 20 May 2011 and 23 May 2011. The units of a are g cm2b.

Flight segment VM (m s21) Minimized M(D) (TWC 1 REFL) Minimized M(D) (REFL only)

1341:25–1352:00 UTC 20 May 2011 0.06 6 0.01 a 5 0.0050, b 5 2.75 a 5 0.0015, b 5 1.10
1354:05–1400:05 UTC 20 May 2011 0.13 6 0.02 a 5 0.0100, b 5 2.75 a 5 0.0025, b 5 1.55
1416:32–1432:15 UTC 20 May 2011 0.17 6 0.06 a 5 0.0265, b 5 2.95 a 5 0.0005, b 5 1.10
1435:30–1440:35 UTC 20 May 2011 0.21 6 0.05 a 5 0.0115, b 5 2.55 a 5 0.0040, b 5 1.95

2149:55–2155:15 UTC 23 May 2011 0.12 6 0.04 a 5 0.0055, b 5 2.65 a 5 0.0010, b 5 1.30
2206:45–2211:00 UTC 23 May 2011 0.18 6 0.04 a 5 0.0010, b 5 1.05 a 5 0.0010, b 5 1.05
2232:50–2237:15 UTC 23 May 2011 0.19 6 0.06 a 5 0.0020, b 5 1.95 a 5 0.0010, b 5 1.35
2241:35–2248:20 UTC 23 May 2011 0.24 6 0.07 a 5 0.0035, b 5 2.30 a 5 0.0055, b 5 2.85
2258:40–2303:40 UTC 23 May 2011 0.20 6 0.09 a 5 0.0020, b 5 1.70 a 5 0.0025, b 5 2.50
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mass or density (not shown). By contrast, these three flight
legs have larger mean VM and more variability in VM (Fig. 1,
Table 3) yet the spread in b only ranges from 0.45 to 0.70 for
a between 20 and 25 m12b s21. These results alone do not
fully disentangle why b values for given a vary differently for
the first flight leg relative to the other three flight legs.

Figure 6 shows the percentage of equally plausible M(D)
that result in statistically similar flight leg VZ for the given
(a, b) ranges in section 4a. Reflectivity-weighted velocity uni-
formly results in b that are as much as 0.2 higher for given a

relative to the results in Fig. 5 for VM. The VZ for the first
flight leg on 20 May 2011 highlights this best: given that reflec-
tivity weighting is proportional to the square of the particle
mass (since Rayleigh scattering can be assumed for S-band
radars), the greater contribution of larger particles to the total
mass particles should explain the increase of b. For example,
b is greater than 0.65 for a between 20 and 25 m12b s21 for
the first flight leg whereas b was between 0.35 and 0.60 for
a between 20 and 25 m12b s21 for the last three flight legs.
Furthermore, the edges of the surfaces show that 40%–90%
of equally plausible M(D) solutions result in a statistically
similar flight leg VZ, compared to 80%–100% of equally plau-
sible M(D) solutions resulting in a statistically similar flight
leg VM. It is worth noting that there are far more equally plau-
sible M(D) for reflectivity-only data, where 7 of the 9 total

flight legs contain more equally plausible M(D) from the
reflectivity-only weighting procedure (see column 2 in Table 5)
compared to the joint mass and reflectivity weighting proce-
dure. These results suggest that incorporating both mass and
reflectivity measurements into the minimization procedure
results in a more certain range of (a, b) for given conditions
(Fig. 5), whereas a reflectivity-only-based procedure produces
a wider, less certain range of (a, b) (Fig. 6). This is as the use
of two constraints should better limit the range of variables.

For equally plausible VM surfaces during the 23 May 2011
flight legs (Fig. 7), ranges of b in general are ;0.01–0.02
(0.05) larger for a , 5 m12b s21 (a . 20 m12b s21) compared
to the equally plausible VZ surfaces. By comparison, equally
plausible VZ surfaces (Fig. 8) cover noticeably larger areas
compared to the 20 May 2011 flight legs (see Fig. 6) and to
the equally plausible VM surfaces for the 23 May 2011 flight
legs. Over 50% of all ice mass observed by the 2D-C and HVPS
for the 23 May 2011 flight legs were from ice particles classified
as “tiny” (i.e., having fewer than 25 pixels). For the flight on
23 May 2011, radar reflectivity (denoted Z hereafter) was be-
tween 15 and 25 dBZ for all flight legs (see Fig. 6 in Finlon et al.
2019) whereas the 20 May 2011 flight had more variability with
Z between 10 and 30 dBZ. The Z values observed during the
first two flight legs on 20 May 2011 are higher overall because
of the much larger observed ice particle concentrations, in

FIG. 6. As in Fig. 5, but for the 10-s averaged flight leg, best estimate reflectivity-weighted fall velocity VZ.
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addition to larger maximum dimension particles (see Fig. 11
in Finlon et al. 2019). Furthermore, the ice water content
(IWC) observed by the Nevzorov probe frequently measured
between 0.5 and 1 g m23 across all flight legs for 23 May

2011, as compared to 20 May 2011 when the total IWC mea-
sured between 0.5 and 0.7 g m23 for only the first two flight
legs (see Fig. 6 in Finlon et al. 2019). Thus, it is hypothesized
that the increased variability in (a, b) for the 23 May 2011

FIG. 7. As in Fig. 5, but for 23 May 2011 flight legs.

FIG. 8. As in Fig. 6, but for 23 May 2011 flight legs.
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flight legs results from larger mass associated with higher
N(D) at smaller size ranges especially when the total number
concentration is dominated by ice particles less than 200 mm
but IWC exceeds 0.5 g m23.

There are a couple of possible explanations why equally
plausible M(D) derived using combined mass and reflectivity
measurements vary less than those derived using reflectivity
only, as deduced by the areal coverage by the reflectivity-only
surfaces in Figs. 6 and 8 compared to the combined surfaces
in Figs. 5 and 7, especially for the 23 May 2011 flight legs.
Temperature for the 20 May 2011 flight varied from 25.68 to
222.78C as the aircraft sampled evolving conditions within a
trailing stratiform region, but for five flight legs on 23 May
2011 only between 225.08 and 234.78C when the anvil cirrus
did not evolve as dramatically. Even though the IWC was
consistently above 0.5 g m23 on 23 May 2011, the ice particles
much more frequently had D , 200 mm. This resulted in
a higher b for all given a. The possibility also exists that the
difference in minimized M(D) using mass and reflectivity,
compared to reflectivity only, is due to the limitation in the
Nevzorov probe being unable to capture the largest particles
where radar reflectivity is most sensitive to the largest ice

particles in a given sample volume. In section 5, the equally
plausible framework introduced in section 3 is used to eluci-
date how temperature and parameter variability affect ranges
of equally plausible (a, b) surfaces.

5. Variability arising from Ar, Dmax, and N(D)

Following the minimization procedures in section 3c, which
accounts for variability arising from Ar, Dmax, and N(D), Fig. 9
shows surfaces of x2V for the 20 May 2011 flight legs. Similar to
Fig. 5, the resulting surfaces of equally plausible (a, b) for flight
leg 1 are smallest in area and feature the highest b for all val-
ues of a compared to the other three flight legs. This is consis-
tent with the best estimate VM for this flight leg having the
lowest variability (see Table 3). For all flight legs, the surface
of equally plausible (a, b) using the mass-weighting routine
overlaps at least 62% of the (a, b) surfaces using the reflectivity-
weighting routine. Flight legs 1 and 3 have mass-weighted (a, b)
surfaces where values of b are about 0.01 higher for all a
compared to the reflectivity-weighted (a, b) surfaces, which
contrasts the results detailed in section 4 showing that the
reflectivity-weighted (a, b) surfaces have consistently larger b

FIG. 9. Surfaces of equally plausible (a, b) coefficients generated using minimized M(D) for each individual flight
leg that accounts for uncertainty in area ratio, maximum dimension, and N(D) in VM (blue shading) and VZ (black
dashed) for 20 May 2011 flight legs. The3 and square markers denote, respectively, the most likely (a, b) pair for VM

and VZ. Each of the two-letter symbols represent the (a, b) pairs for habit classifications listed in Locatelli and Hobbs
(1974) for reference (see Table 4 for more information).
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for all given a. This is not the case for the 23 May 2011 flight
legs, where the reflectivity-weighted results for all five flight
legs feature reflectivity-weighted (a, b) surfaces that have lit-
tle overlap with the mass-weighted (a, b) surfaces (Fig. 10).
In fact, there is no overlap between the mass- and reflectivity-
weighted (a, b) surfaces for flight legs 2 and 4 on 23 May
2011. This is interesting because neither IWC nor radar re-
flectivity between these five flight legs are statistically differ-
ent (result not shown). However, these flight legs are the only
two legs among both flights where x2min for VM is less than
Dx21,V , implying that uncertainty in Ar is larger than the natu-
ral parameter variability as well as uncertainties from Dmax

and N(D) (see Table 5). This is also true for flight leg 3 on
23 May 2011 where x2min for VZ is less than Dx21,V , although
the VM surface overlaps approximately 29% of the VZ (a, b)
surfaces despite x2min for VM or VZ not falling within this over-
lapping surface. The main implication of this result is that, for
flight legs occurring at temperatures less than 2208C, choos-
ing between mass and reflectivity weighting may significantly
affect the resulting set of equally plausible (a, b) surfaces.
One possible explanation for this result is that temperatures
less than 2208C favor higher density ice particles, making the
results more sensitive to the choice of weighting (see Figs. 14
and 15 in Finlon et al. 2019). In fact, when comparing these
results to specific (a, b) pairs derived by Locatelli and Hobbs
(1974) for individual habits, at least four pairs overlap for any
given surface (see Table 5). Note, however, that most of these
V(D) relationships were derived for ice particles with maxi-
mum dimensions between 1 and 3 mm and their coefficients
were not adjusted to sea level for proper comparison with
other environments or studies. Further research is needed to

evaluate our equally plausible framework against V(D) rela-
tionships derived from ice particle datasets where a similar
fraction of mass is contained in sub-1-mm maximum dimen-
sion ice particles.

Another interesting result is that the Dx21,V values for 23 May
2011 are approximately 5 times higher than Dx21,V values for
20May 2011 (Table 5), showing that the uncertainty introduced
by Ar increases when a greater fraction of mass is contained in
smaller (D , 200 mm) ice particles (see Figs. 3 and 4). Further,
higher-density ice particles such as bullet rosettes and columns
form at lower temperatures (HW10) thus causing an increase
in Dx21,V . Given that smaller ice particles tend to dominate at
these temperatures, it makes sense that the uncertainty arising
fromAr exceeds that of natural parameter variability (i.e., x2min)
in these conditions. This also makes sense from a measurement
perspective, because the 2D-C cross-sectional area becomes
less accurate for smaller particles due to decreased image reso-
lution for smaller ice particle maximum dimension (Heymsfield
and Miloshevich 2003). Conversely, for the 20 May 2011 flight
legs, uncertainty arising from Dmax (i.e., Dx22,V) becomes more
important relative to uncertainty arising from Ar (i.e., Dx21,V),
with Table 4 showing that Dx21,V and Dx22,V are closer in magni-
tude. Although Dx21,V is slightly larger for all four 20 May 2011
flight legs compared to Dx22,V for both VM and VZ, both Dx21,V
and Dx22,V are much less in magnitude than x2min. The relatively
larger x2min compared to Dx21,V and Dx22,V suggests that natural
parameter variability between the assumed (a, b) and best esti-
mate VM and VZ is more important for determining uncertainty
in conditions such as the trailing stratiform conditions sampled
in the four 20 May 2011 flight legs. The applicability of this con-
clusion to cloud properties in similar temperature regimes in

FIG. 10. As in Fig. 9, but for 23 May 2011 flight legs.
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other temperature and geographic regimes would have to be
tested using data from other airborne research flights, since
only two research flights are analyzed here.

Comparison of Figs. 5–8 with Figs. 9 and 10 shows that
using the most likely (a, b), without considering variability in
(a, b), results in a smaller set of equally realizable (a, b). Not-
ing that Fig. 6 incorporates the most likely (a, b) without
considering the range of possible solutions, the resulting surfa-
ces of equally plausible (a, b) for V(D) relationships cover less
area than the resulting surfaces shown in Figs. 5–8 where the
range of plausible (a, b) is considered using both mass- and
reflectivity-weighting schemes. Similar to Figs. 6 and 8, the
surfaces of equally plausible (a, b) for the 23 May 2011 flight
cover more area compared to the 20 May 2011 flight. For
all reflectivity-weighted VZ results, the (a, b) surfaces cover

regions where b is as much as 0.1 less for a given a, irrespec-
tive of the total area covered by the (a, b) surfaces. If only
reflectivity data are available, using a single M(D) solution
without considering the range of equally plausible (a, b) for
M(D) results in a larger equally plausible (a, b) surface for
VZ, implying increased uncertainty relative to VM.

Overall, the findings presented in this study suggest that the
most important sources of uncertainty vary with temperature.
For example, for temperatures less than 2208C, Dx21,V (i.e.,
Ar) is much larger compared to Dx22,V (i.e., Dmax) and can ex-
ceed natural parameter variability (i.e., x2min) as the leading
source of uncertainty (see Table 5). Temperature can influ-
ence the primary ice particle habits in a given sample and, for
example, environmental regimes conducive for columnar and
needle shapes more likely to contribute to lower values of Ar,

TABLE 4. List of V(D) 5 aDb relationships from previous studies. Units of a are m12b s21; b is unitless.

Habit Symbol (Fig. 10) (a, b) Reference

Lump graupel G1 (1.16, 0.46) Locatelli and Hobbs (1974)
G2 (1.30, 0.66)
G3 (1.50, 0.37)

Conical graupel CG (1.20, 0.65) Locatelli and Hobbs (1974)
Hexagonal graupel HG (1.10, 0.57) Locatelli and Hobbs (1974)
Graupel-like snow S1 (1.10, 0.28) Locatelli and Hobbs (1974)

S2 (0.86, 0.25)
(Rimed) columns RC (1.10, 0.56) Locatelli and Hobbs (1974)
(Rimed) dendrites RD (0.62, 0.33) Locatelli and Hobbs (1974)
(Rimed) assemblages of dendrites AD (1.10, 0.12) Locatelli and Hobbs (1974)
Unrimed side planes SP (0.81, 0.99) Locatelli and Hobbs (1974)
Aggregates A1 (0.80, 0.16) Locatelli and Hobbs (1974)

A2 (0.79, 0.27)
A3 (0.69, 0.41)
A4 (0.82, 0.12)

TABLE 5. Total number of equally plausible (a, b) pairs for M(D) relationships using a mass weighting procedure (x2M) or a
reflectivity weighting procedure (x2Z). Also shown are minimized x2 statistics for all (a, b) surfaces (x2min) and uncertainties in the
area ratio (Dx21,V), maximum dimension (Dx22,V), and in the N(D) (Dx23,V).x

2 statistics are shown for VM (VZ).

Flight segment
No. of M(D)
for x2M (x2Z) x2min Dx21,V Dx22,V Dx23,V

1341:25–1352:00 UTC
20 May 2011

39 (115) 0.013 55 (0.019 77) 0.008 26 (0.0073) 0.007 16 (0.007 10) ,,0.001 (,,0.001)

1354:05–1400:05 UTC
20 May 2011

100 (215) 0.018 25 (0.020 91) 0.008 80 (0.008 39) 0.007 56 (0.007 38) ,, 0.001 (,,0.001)

1416:32–1432:15 UTC
20 May 2011

219 (386) 0.146 19 (0.141 85) 0.008 18 (0.00 803) 0.007 55 (0.007 42) ,,0.001 (,,0.001)

1435:30–1440:35 UTC
20 May 2011

45 (151) 0.060 27 (0.055 84) 0.008 08 (0.007 81) 0.007 68 (0.007 50) ,,0.001 (,,0.001)

2149:55–2155:15 UTC
23 May 2011

99 (90) 0.122 01 (0.200 02) 0.040 12 (0.025 75) 0.026 62 (0.020 16) ,,0.001 (,,0.001)

2206:45–2211:00 UTC
23 May 2011

182 (152) 0.030 73 (0.074 97) 0.049 26 (0.028 53) 0.031 48 (0.023 37) ,,0.001 (,,0.001)

2232:50–2237:15 UTC
23 May 2011

88 (95) 0.443 02 (0.351 35) 0.048 12 (0.039 36) 0.030 90 (0.026 73) ,,0.001 (,,0.001)

2241:35–2248:20 UTC
23 May 2011

28 (58) 0.041 72 (0.127 48) 0.049 82 (0.046 35) 0.031 59 (0.029 96) ,,0.001 (,,0.001)

2258:40–2303:40 UTC
23 May 2011

37 (59) 0.922 34 (0.718 81) 0.046 55 (0.042 36) 0.026 18 (0.024 15) ,,0.001 (,,0.001)
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further influencing the Best or Davies number. Likewise, the
overlap between the mass- and reflectivity-weighted sur-
faces was much less for the 20 May 2011 cases compared to
23 May 2011, which can be attributed to mean density dif-
ferences in the ice particles sampled respective for each
flight. By contrast for the 23 May 2011 case, the choice in
mass or reflectivity weighting resulted in considerably more
overlap in the equally plausible (a, b) surfaces compared to
colder conditions sampled on 20 May 2011, and natural pa-
rameter variability was the largest source of uncertainty
compared to Ar, Dmax, or N(D). These results make clear
that the key uncertainty source in ice particle velocity, as
well as underlying results from choosing mass or reflectivity
weighting, is highly dependent on the sampling environ-
ment and meteorology. Given the cloud particles examined
in this work were convectively generated, there is a need
to apply and test this methodology on nonconvectively gen-
erated ice clouds to clarify if any differences in uncertainty
sources arise in varying meteorological regimes. For exam-
ple, Hu et al. (2021) noted key differences in ice cloud
properties as functions of their proximity to convective
cores.

6. Conclusions

Two different approaches for quantifying uncertainty in ice
particle fall velocity calculations were developed and evalu-
ated. The first method addresses uncertainty in V(D) relation-
ships arising from equally realizable M(D) relationships, and
the second method establishes a framework for evaluating the
relative roles of different sources of uncertainty in V(D) rela-
tionships of the form V(D) 5 aDb appropriate for use in
models, including differences arising from weighting the fall
speed by mass or reflectivity to derive the coefficients. All VT

were adjusted to SLP, such that all results were easily compa-
rable to one another. The use of equally plausible (a, b) coef-
ficients in M(D) 5 aDb relationships to determine surfaces of
equally plausible (a, b) coefficients for V(D) results in larger
surfaces when using a reflectivity-weighting scheme (i.e., for
VZ) compared to a mass weighting scheme (i.e., for VM) for
two research flights during the Midlatitude Continental
Clouds Experiment (MC3E). The uncertainties arising from
variability of parameters [e.g., Ar, Dmax, and N(D)] used to
compute ice particle fall velocity and those from the variabil-
ity of the equally plausible M(D) relationships were shown to
not have as large of an impact as natural variability for con-
straining uncertainty in V(D) relationships. The spread in b for
any given a was lower for the trailing stratiform conditions
sampled on 20 May 2011 compared to the 23 May 2011 flight
legs. Further, the equally plausible (a, b) surfaces generated
using VM and VZ had more overlap for all flight legs on
20 May 2011 compared to 23 May 2011.

Overall, results from our study suggest that

1) the most important source of uncertainty (i.e., natural pa-
rameter variability, Ar, or Dmax) changes relative to the
ambient temperature,

2) additional studies need to consider measurements sam-
pling more meteorological conditions at similar tempera-
tures and altitudes, especially for stratiform clouds given
that clouds sampled in this study were convectively gener-
ated, and

3) future studies should further account for how these pa-
rameters depend on other environmental variables like
relative humidity.

Studies of fall velocity parameterizations are also limited by
the fact that real measurements of fall velocity are currently
unavailable from airborne platforms at flight level. The tech-
niques developed here should also be applied to more de-
tailed measurements of fall velocity available from ground-
based remote sensing instruments where long-term VT data-
sets can be collected or retrieved. As one example, ice particle
fall velocity data could be retrieved from ground-based verti-
cally pointing radar if the ambient atmospheric vertical veloc-
ity is known (e.g., Kollias et al. 2007; Shupe et al. 2008a,b).
The Multi-Angle Snowflake Camera (Garrett et al. 2012)
can also attain accurate ice particle fall speed data in light
wind conditions and proper wind shielding (Fitch et al.
2021). Vázquez-Martı́n et al. (2021b) recently quantified ice
particle mass from maximum dimension, cross-sectional
area, and particle fall velocity from a recently developed
dataset using the Dual Ice Crystal Imager (D-ICI; Kuhn
and Vázquez-Martı́n 2020). The Multi-Angle Snowflake
Camera and D-ICI dataset represent two viable datasets to
consider for future studies investigating uncertainty in ice
particle terminal velocities.

Future studies should investigate how surfaces of (a, b)
coefficients vary in a wider variety of environmental condi-
tions, such as tropical cyclones, winter storms, frontal systems,
and other storm systems. Noting that severe hailstorms cause
billions of dollars in damage worldwide each year (Changnon
1999), further constraint of ice particle fall velocities at the ini-
tial growth phase of hail could further improve model repre-
sentations of hail evolution and subsequent application for
evaluating a variety of newer, state-of-the-art hail retrievals
and climatologies (e.g., Bang and Cecil 2019, 2021; Brook et al.
2021). More generally, improved constraints on ice particle
fall velocities could lead to better forecasts and simulations of
convective parameters such as lapse rates, mixing ratio, pre-
cipitation, and hail (e.g., Grabowski 1999; Lin et al. 2021), as
well as potentially aid in identifying sources of systematic
biases in model forecasts where atmospheric state reanalysis
products are used as inputs (Van Weverberg et al. 2013;
Gensini et al. 2014; Taszarek et al. 2020). Fall velocities for
high IWC conditions (i.e., IWC . 0.5 g m23) should also be
explored, especially given evidence presented here that over-
lap between mass- and reflectivity-weighted (a, b) surfaces
decreases with increasing IWC. High IWC conditions were
not uncommon during MC3E and occur frequently (e.g.,
Rugg et al. 2021; Hu et al. 2021). Ongoing work investigating
the difference in equally plausible M(D) relationships using
the Nevzorov and Isokinetic Probe–2 (IKP-2; Strapp et al.
2016) may improve estimates of V(D) relationships by reduc-
ing uncertainties apparent from Nevzorov IWC data, which
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were used for equally plausible M(D) relationships. Finally,
our results showing variability in VM or VZ from varying
(a, b) can be implemented in a stochastic framework in
models (e.g., Stanford et al. 2019) using the P3 microphysical
parameterization scheme to explore how uncertainties in fall

velocity cascade up to model predicted VM or VZ and other
fields.
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